Specific Symbols

- Di is the inside diameter of the shell;
- De is the outside diameter of the cylindrical flange;
- eb is required thickness of knuckle to avoid plastic buckling;
- es is required thickness of end to limit membrane stress in central part;
- ey is required thickness of knuckle to avoid axisymmetric yielding;
- e is the maximum calculated thickness of es, ey, eb;
- ea analysis thickness, actual plate thickness less thinning and corrosion allowances;
- fb is design stress for buckling equation;
- hi is inside height of end measured from the tangent line;
- K is shape factor for an ellipsoidal end;
- N is a parameter;
- R is inside spherical radius of central part of torispherical end;
- X is ratio of knuckle inside radius to shell inside diameter;
- y is a parameter;
- Z is a parameter;
- Beta is a factor.

Dished Heads To EN13445 Part 3 Section 7.5

Di = 3000	Inside Diameter		
e _a = 15.65	Thickness		
R := 3000	Inside Spherical Radius		
r := 300	Inside Knuckle Radius		
P = 0.7	Design Pressure		
f := 120	Design Stress		
z := 1	Joint Factor		
R p0.2 = 195	0.2% Proof stress at design temperature For Austenitic ss multyply Rp by 1.6		
$e = e_a$	Assume e = ea as a first estimate		

Limits

$De = Di + 2 \cdot e_a$	De = 302	31.3	
test $=$ if(r \leq 0.2 Di, 1,	,0)	test = 1	1 = Acceptable
test $=$ if($r \ge 0.06 \cdot Di$, 1	1,0)	test = 1	
test := if($r \ge 2 \cdot e, 1, 0$)		test = 1	
test := if($e \leq 0.08 \cdot De$,	1,0)	test = 1	
test := if $(e_a \ge 0.001 \cdot I)$	De, 1, 0	test = 1	

Factors

$$\frac{e}{R} = 5.217 \cdot 10^{-3} \qquad Y := if\left(\frac{e}{R} > 0.04, 0.04, \frac{e}{R}\right) \qquad Y = 5.217 \cdot 10^{-3}$$

$$Z := \log\left(\frac{1}{Y}\right) \qquad \qquad Z = 2.283 \qquad \qquad X := \frac{r}{Di} \qquad \qquad X = 0.1$$

$$N = 1.006 - \frac{1}{(6.2 + (90 \cdot Y)^4)} \qquad N = 0.846$$

$$\beta_{0.06} := N \cdot (-0.3635 \cdot Z^3 + 2.2124 \cdot Z^2 - 3.2937 \cdot Z + 1.8873)$$
 $\beta_{0.06} = 1.331$

$$\beta_{0.1} = N \cdot (-0.1833 \cdot Z^3 + 1.0383 \cdot Z^2 - 1.2943 \cdot Z + 0.837)$$
 $\beta_{0.1} = 0.941$

$$\beta_{0.06_0.1} = 25 \cdot \left[(0.1 - X) \cdot \beta_{0.06} + (X - 0.06) \cdot \beta_{0.1} \right] \qquad \beta_{0.06_0.1} = 0.941$$

$$\beta_{0.2} := if(0.95 \cdot (0.56 - 1.94 \cdot Y - 82.5 \cdot Y^2) > 0.5, 0.95 \cdot (0.56 - 1.94 \cdot Y - 82.5 \cdot Y^2), 0.5) \beta_{0.2} = 0.52 \cdot (0.56 - 1.94 \cdot Y - 82.5 \cdot Y^2), 0.5)$$

$$\beta_{0.1_0.2} := 10 \cdot \left[(0.2 - X) \cdot \beta_{0.1} + (X - 0.1) \cdot \beta_{0.2} \right] \quad \beta_{0.1_0.2} = 0.941$$

$$\beta_{} := if \left(X < 0.1, \beta_{0.06_0.1}, \beta_{0.1_0.2} \right)$$

$$\beta_{} := if \left(X = 0.06, \beta_{0.06}, \beta \right)$$

$$\beta_{} := if \left(X = 0.2, \beta_{0.1_0.2}, \beta \right)$$

$$\beta_{} = 0.941$$

$$f_{b} := \frac{R \text{ p0.2}}{1.5} \qquad f_{b} = 130$$

$$e_{b} := (0.75 \cdot R + 0.2 \cdot \text{Di}) \cdot \left[\frac{P}{111 \cdot f_{b}} \cdot \left(\frac{\text{Di}}{r}\right)^{0.825}\right]^{\left(\frac{1}{1.5}\right)} \qquad e_{b} = 13.45$$

$$e_{s} := \frac{P \cdot R}{2 \cdot f \cdot z - 0.5 \cdot P}$$

$$e_{y} := \frac{\beta \cdot P \cdot (0.75 \cdot R + 0.2 \cdot Di)}{f}$$

$$e_{y} := 15.646$$

It may be necessary to perform this calculation several times, calculating a new value of Y using the calculated value of e; where e is the maximum value of es,ey,eb.

Ellipsoidal Heads

For this type of head an equivalent Spherical and Knuckle radius must be calculated as follows:-

$$h_i := \frac{D_i}{4} \qquad h_i = 750$$

$$K := \frac{D_i}{2 \cdot h_i} \qquad K = 2$$

Test

test = if(1.7 < K, 1, 0) test = 1 test = if(K < 2.2, 1, 0) test = 1

Equivalent Radii

$$\mathbf{r} := \mathbf{D}_{\mathbf{i}} \cdot \left[\left(\frac{0.5}{\mathbf{K}} \right) - 0.08 \right] \qquad \mathbf{r} = 510$$

$$R = D_i \cdot (0.44 \cdot K + 0.02)$$
 $R = 2700$

The ellipsoidal head is then treated as a a torispherical head using the above values for R and r