Specific Symbols

Di is the inside diameter of the shell;
De is the outside diameter of the cylindrical flange;
eb is required thickness of knuckle to avoid plastic buckling;
es is required thickness of end to limit membrane stress in central part;
ey is required thickness of knuckle to avoid axisymmetric yielding;
e is the maximum calculated thickness of es, ey, eb;
ea analysis thickness, actual plate thickness less thinning and corrosion allowances;
$\mathrm{fb} \quad$ is design stress for buckling equation;
hi is inside height of end measured from the tangent line;
K is shape factor for an ellipsoidal end;
$\mathrm{N} \quad$ is a parameter;
$\mathrm{R} \quad$ is inside spherical radius of central part of torispherical end;
$\mathrm{X} \quad$ is ratio of knuckle inside radius to shell inside diameter;
y is a parameter;
Z is a parameter;
Beta is a factor.

Dished Heads To EN13445 Part 3 Section 7.5

$\mathrm{Di}:=3000$	Inside Diameter
$\mathrm{e}_{\mathrm{a}}:=15.65$	Thickness
$\mathrm{R}:=3000$	Inside Spherical Radius
$\mathrm{r}:=300$	Inside Knuckle Radius
$\mathrm{P}:=0.7$	Design Pressure
$\mathrm{f}:=120$	Design Stress
$\mathrm{z}:=1$	Joint Factor
$\mathrm{R} \mathrm{R}_{\mathrm{p} 0.2}:=195$	0.2\% Proof stress at design temperature

$\mathrm{e}:=\mathrm{e} \quad \mathrm{a} \quad$ Assume $\mathrm{e}=\mathrm{ea}$ as a first estimate

Limits
$\mathrm{De}:=\mathrm{Di}+2 \cdot \mathrm{e} \mathrm{a} \quad \mathrm{De}=3031.3$
test : $=\operatorname{if}(\mathrm{r} \leq 0.2 \cdot$ Di, 1,0$) \quad$ test $=1 \quad 1=$ Acceptable
test $:=\mathrm{if}(\mathrm{r} \geq 0.06 \cdot \mathrm{Di}, 1,0) \quad$ test $=1$
test $:=\mathrm{if}(\mathrm{r} \geq 2 \cdot \mathrm{e}, 1,0) \quad$ test $=1$
test $:=\operatorname{if}(\mathrm{e} \leq 0.08 \cdot \mathrm{De}, 1,0) \quad$ test $=1$
test $:=$ if $\left(\mathrm{e}_{\mathrm{a}} \geq 0.001 \cdot \mathrm{De}, 1,0\right)$ test $=1$

Factors
$\frac{\mathrm{e}}{\mathrm{R}}=5.217 \cdot 10^{-3}$
$\mathrm{Y}:=\mathrm{if}\left(\frac{\mathrm{e}}{\mathrm{R}}>0.04,0.04, \frac{\mathrm{e}}{\mathrm{R}}\right)$
$\mathrm{Y}=5.217 \cdot 10^{-3}$
$\mathrm{Z}:=\log \left(\frac{1}{\mathrm{Y}}\right)$
$\mathrm{Z}=2.283$
$X:=\frac{r}{\mathrm{Di}}$
$\mathrm{X}=0.1$
$\mathrm{N}:=1.006-\frac{1}{\left(6.2+(90 \cdot \mathrm{Y})^{4}\right)}$

$$
\mathrm{N}=0.846
$$

$$
\begin{aligned}
& \beta_{0.06}:=N \cdot\left(-0.3635 \cdot Z^{3}+2.2124 \cdot Z^{2}-3.2937 \cdot Z+1.8873\right) \quad \beta_{0.06}=1.331 \\
& \beta_{0.1}:=\mathrm{N} \cdot\left(-0.1833 \cdot \mathrm{Z}^{3}+1.0383 \cdot \mathrm{Z}^{2}-1.2943 \cdot \mathrm{Z}+0.837\right) \quad \beta_{0.1}=0.941 \\
& \beta_{0.06 _0.1}:=25 \cdot\left[(0.1-X) \cdot \beta_{0.06}+(X-0.06) \cdot \beta_{0.1}\right] \quad \beta_{0.06 _0.1}=0.941 \\
& \beta_{0.2}:=\operatorname{if}\left(0.95 \cdot\left(0.56-1.94 \cdot Y-82.5 \cdot Y^{2}\right)>0.5,0.95 \cdot\left(0.56-1.94 \cdot Y-82.5 \cdot Y^{2}\right), 0.5\right) \quad \beta_{0.2}=0.52 \\
& \beta_{0.1 _0.2}:=10 \cdot\left[(0.2-X) \cdot \beta_{0.1}+(X-0.1) \cdot \beta_{0.2}\right] \quad \beta_{0.1 _0.2}=0.941 \\
& \beta:=\text { if }\left(X<0.1, \beta_{0.06 _0.1}, \beta_{0.1 _0.2}\right) \\
& \beta:=\text { if }\left(X=0.06, \beta_{0.06}, \beta\right) \\
& \beta:=\operatorname{if}\left(X=0.2, \beta_{0.1 _0.2}, \beta\right) \\
& \beta=0.941 \\
& \mathrm{f}_{\mathrm{b}}:=\frac{\mathrm{R} \mathrm{p} 0.2^{1.5} \quad \mathrm{f}_{\mathrm{b}}=130}{} \\
& e_{b}:=(0.75 \cdot R+0.2 \cdot D i) \cdot\left[\frac{P}{111 \cdot f_{b}} \cdot\left(\frac{D i}{r}\right)^{0.825}\right]^{\left(\frac{1}{1.5}\right)} \quad e_{b}=13.45 \\
& e_{s}:=\frac{P \cdot R}{2 \cdot f \cdot z-0.5 \cdot P} \\
& e_{S}=8.763 \\
& e_{y}:=\frac{\beta \cdot P \cdot(0.75 \cdot R+0.2 \cdot D i)}{f} \quad e_{y}=15.646
\end{aligned}
$$

It may be necessary to perform this calculation several times, calculating a new value of Y using the calculated value of e; where e is the maximum value of es,ey,eb.

Ellipsoidal Heads

For this type of head an equivalent Spherical and Knuckle radius must be calculated as follows:-
$\mathrm{D}_{\mathrm{i}}:=3000$
$\mathrm{h}_{\mathrm{i}}:=\frac{\mathrm{D}_{\mathrm{i}}}{4} \quad \mathrm{~h}_{\mathrm{i}}=750$
$\mathrm{K}:=\frac{\mathrm{D}_{\mathrm{i}}}{2 \cdot \mathrm{~h}_{\mathrm{i}}} \quad \mathrm{K}=2$

Test
test $:=\operatorname{if}(1.7<K, 1,0) \quad$ test $=1 \quad$ test $:=\operatorname{if}(\mathrm{K}<2.2,1,0) \quad$ test $=1$

Equivalent Radii

$$
\mathrm{r}:=\mathrm{D}_{\mathrm{i}} \cdot\left[\left(\frac{0.5}{\mathrm{~K}}\right)-0.08\right] \quad \mathrm{r}=510
$$

$$
\mathrm{R}:=\mathrm{D}_{\mathrm{i}} \cdot(0.44 \cdot \mathrm{~K}+0.02) \quad \mathrm{R}=2700
$$

The ellipsoidal head is then treated as a a torispherical head using the above values for R and r

