

Figure 9.4-7 Cylindrical shell with isolated opening and set-on nozzle

EN13445-3 Section 9. Nozzles In Cylindrical Shells

$$e_{cs} = 10$$
 Assumed thickness of Shell wall, can be taken as ea $e_{as} = e_{cs}$

$$e_{ab} = 8$$
 Nozzle Thickness

$$\alpha = 0$$
 Half included cone angle (0 for a cylinder)

Protrusion = 0 Nozzle Protrusion Into Shell

Seton
$$= 1$$
 Branch Set-on if $= 1$, else 0

Afw =
$$5 \cdot \frac{5}{2}$$
 All Fillet Weld Areas within reinforcement limit

$$r_{is} := \frac{Di}{2} + e_{as}$$
 Shell Radius $r_{is} = 610$

ISo = Length of Reinforcement along Shell

Iso :=
$$\sqrt{(2 \cdot r_{is} + e_{cs}) \cdot e_{cs}}$$
 Iso = 110.905

IBo = Length of Reinforcement along Branch

Ibo :=
$$\sqrt{\left[\left(di + 2 \cdot e_{ab}\right) - e_{ab}\right] \cdot e_{ab}}$$
 Ibo = 29.394

Ibi = 0.5·Ibo Nozzle Protrusion

Ibi =
$$if(Ibi > Protrusion, Protrusion, Ibi)$$
 Ibi = 0

Apb & Aps For Set in and set on Nozzles In Cylinders or Cones

$$Apb := 0.5 \cdot di \cdot (Ibo + e_{as})$$

$$Apb = 1969.694$$

$$a := 0.5 \cdot (di + 2 \cdot e_{as})$$
 As $s := r_{is} \cdot (Iso + a)$ Cylinders

As
$$c = 0.5 \cdot (Iso + a) \cdot \left[r_{is} + \left[r_{is} + (Iso + a) \cdot tan \left(\frac{\alpha \cdot \pi}{180} \right) \right] \right]$$
 Cones

Aps := if
$$(\alpha = 0, \text{As}_{s}, \text{As}_{c})$$
 Aps = 1.043•10⁵

Set In Nozzle

Afs
$$_{in} := e_{cs} \cdot Iso$$
 Afs $_{on} := e_{cs} \cdot (Iso + e_{ab})$

Afb
$$_{in} := e_{ab} \cdot (Ibo + Ibi + e_{as})$$
 Afb $_{on} := e_{ab} \cdot Ibo$

Afs = if (Seton=1, Afs on, Afs in)
$$Afs = 1.189 \cdot 10^3$$

$$f_{ob} = if(fs < fb, fs, fb)$$
 $f_{op} = if(fs < fp, fs, fp)$

$$Ap\phi = 0$$

Check Adequacy Of Branch Compensation

$$RHS \coloneqq (Afs + Afw) \cdot (fs - 0.5 \cdot P) + Afp \cdot \left(f_{op} - 0.5 \cdot P\right) + Afb \cdot \left(f_{ob} - 0.5 \cdot P\right)$$

LHS :=
$$P \cdot (Aps + Apb + 0.5 \cdot Ap\phi)$$

Check Limits in Fig 9.4-14 and 9.4-15.

If it fails Fig 9.4-14, the branch thickness, for the purposes of calculations, can be reduced.

9.6 Multiple Openings

The Minimum Length of a Ligament Between two adjacent openings

Ligament = if
$$\left[0.2 \cdot \sqrt{\left(2 \cdot r_{is} + e_{cs}\right)} > 3 \cdot e_{as}, 0.2 \cdot \sqrt{\left(2 \cdot r_{is} + e_{cs}\right)}, 3 \cdot e_{as}\right]$$
 Ligament = 30

If the Ligament is greater than this value, then the Distance Iso for each nozzle may have to be reduced to fit.

9.7 Openings Close to aShell Discontinuity, Cylinders

Wmin, is the minimum distance between the top of an opening in a cylindrical shell to a discontinuity. The discontinuity can be the end of the shell, junction of a cone or dished head.

$$W_{min} = if \left[0.2 \cdot \sqrt{(2 \cdot r_{is} + e_{cs})} > 3 \cdot e_{as}, 0.2 \cdot \sqrt{(2 \cdot r_{is} + e_{cs})}, 3 \cdot e_{as} \right]$$
 $W_{min} = 30$

Note If distance W is greater than Wmin but less than the calculated distance Iso, Iso must be reduced to the value of W for all the above calculations.

Wmin, If the opening is in cylindrical section of the small end of a cone or in a the side of a nozzle, then the distance between the top or bottom of the opening to the outside diameter of a shell or discontinuity.

$$W_{min} := \sqrt{(Di - e_{as}) \cdot e_{as}}$$

$$W_{min} = 109.087$$

Wmin, If the shell is fitted with an expansion joint the distance between the top or bottom of the opeining and the end of the shell (Not the joint).

$$W_{\min} := \frac{\sqrt{(Di - e_{as}) \cdot e_{as}}}{2} \qquad W_{\min} = 54.544$$

Note If distance W is greater than Wmin but less than the calculated distance Iso + Wmin, Iso must be reduced to the value of W-Wmin for all the above calculations.